QCMC: Quasi-conformal Parameterizations for Multiply-connected domains
نویسندگان
چکیده
This paper presents a method to compute the quasi-conformal parameterization (QCMC) for a multiply-connected 2D domain or surface. QCMC computes a quasi-conformal map from a multiply-connected domain S onto a punctured disk DS associated with a given Beltrami differential. The Beltrami differential, which measures the conformality distortion, is a complexvalued function μ : S → C with supremum norm strictly less than 1. Every Beltrami differential gives a conformal structure of S. Hence, the conformal module of DS , which are the radii and centers of the inner circles, can be fully determined by μ, up to a Möbius transformation. In this paper, we propose an iterative algorithm to simultaneously search for the conformal module and the optimal quasi-conformal parameterization. The key idea is to minimize the Beltrami energy subject to the boundary constraints. The optimal solution is our desired quasi-conformal parameterization onto a punctured disk. The parameterization of the multiply-connected domain simplifies numerical computations and has important applications in various fields, such as in computer graphics and vision. Experiments have been carried out on synthetic data together with real multiply-connected Riemann surfaces. Results show that our proposed method can efficiently compute quasi-conformal parameterizations of multiply-connected domains and outperforms other state-of-the-art algorithms. Applications of the proposed parameterization technique have also been explored.
منابع مشابه
An Efficient Energy Minimization for Conformal Parameterizations
Surface parameterizations have been widely applied to digital geometry processing. In this paper, we propose an efficient conformal energy minimization (CEM) algorithm for computing conformal parameterizations of simply-connected open surfaces with a very small angular distortion and a highly improved computational efficiency. In addition, we generalize the proposed CEM algorithm to computing c...
متن کاملFast Disk Conformal Parameterization of Simply-connected Open Surfaces
Surface parameterizations have been widely used in computer graphics and geometry processing. In particular, as simply-connected open surfaces are conformally equivalent to the unit disk, it is desirable to compute the disk conformal parameterizations of the surfaces. In this paper, we propose a novel algorithm for the conformal parameterization of a simply-connected open surface onto the unit ...
متن کاملConformal Mapping of Multiply Connected Riemann Domains by a Variational Approach
We show with a new variational approach that any Riemannian metric on a multiply connected schlicht domain in R can be represented by globally conformal parameters. This yields a “Riemannian version” of Koebe’s mapping theorem. Mathematics Subject Classification (2000): 30C20, 49J45, 49Q05, 49Q10, 53A10
متن کامل3D Non-rigid Surface Matching and Registration Based on Holomorphic Differentials
3D surface matching is fundamental for shape registration, deformable 3D non-rigid tracking, recognition and classification. In this paper we describe a novel approach for generating an efficient and optimal combined matching from multiple boundary-constrained conformal parameterizations for multiply connected domains (i.e., genus zero open surface with multiple boundaries), which always come f...
متن کاملBreakthrough in Conformal Mapping
Few analytical techniques are better known to students of applied mathematics than conformal mapping. It is the classical method for solving problems in continuum mechanics, electrostatics, and other fields involving the two-dimensional Laplace and Poisson equations. To employ the method, one needs an explicit mapping function from some standard domain— such as the unit disk or upper half plane...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 42 شماره
صفحات -
تاریخ انتشار 2016